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Abstract

A long-running difficulty with conventional game theory has been how
to modify it to accommodate the bounded rationality of all real-world
players. A recurring issue in statistical physics is how best to approx-
imate joint probability distributions with decoupled (and therefore far
more tractable) distributions. This paper shows that the same infor-
mation theoretic mathematical structure, known as Product Distribution
(PD) theory, addresses both issues. In this, PD theory not only provides
a principled formulation of bounded rationality and a set of new types of
mean field theory in statistical physics; it also shows that those topics are
fundamentally one and the same.

1 Introduction

In noncooperative game theory, one has a set of N players, each choosing its
strategy xi independently, by sampling a distribution qi(xi) over those strate-
gies. Each player i also has her own utility function gi(x), specifying how
much reward she gets for every possible joint-strategy x of all N players. Let
q(i)(x(i)) mean the joint probability distribution of all players other than i, i.e.,
∏

j 6=i qj(xj). Then the “goal” of each player i is to set qi to so that, conditioned
on q(i), the expected value of i’s utility is as high as possible.

Conventional game theory assumes each player i is “fully rational”, able to
solve for that optimal qi, and that she then uses that distribution. It is primarily
concerned with analyzing such equilibria of the game [3, 4, 5, 6]. In the real
world, this assumption of full rationality almost never holds, whether the players
are humans, animals, or computational agents [7, 8, 9, 10, 11, 12, 13, 14, 15].
This is due to the cost of computation of that optimal distribution, if nothing
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else. This real-world bounded rationality is one of the major impediments to
applying conventional game theory in the real world.

More generally, consider any scientific scenario, in which one wishes to make
predictions about a particular physical system. To make those predictions it
is necessary to first have some information / data concerning the system, to
serve as the basis of one’s prediction. Without such information, science can
say nothing, and to pretend otherwise is erroneous. This is true even when the
physical system is a set of human players engaged in a game: To make any pre-
dictions concerning the players, one must first be provided (or obtain through
observation) some information concerning them and the game. Together with
known scientific laws, only that provided information should be used in making
one’s prediction. So in particular, unless one explicitly is provided the informa-
tion that the players in a game are fully rational, to simply assume that they
are violates one of the fundamental tenets of how science is done.

This paper shows how Shannon’s information theory [16, 17, 18] provides a
principled way to modify conventional game theory to accommodate bounded
rationality. This is done by following information theory’s prescription that,
given only partial knowledge concerning the distributions the players are using,
we should use the minimum information (Maxent) principle to infer those distri-
butions. Doing so results in the principle that the bounded rational equilibrium
is the minimizer of a certain set of coupled Lagrangian functions of the joint
distribution, q(x) =

∏

i qi(xi). This mathematical structure is a special instance
of Product Distribution (PD) theory [19, 20, 21, 22, 23, 24, 11].

In addition to showing how to formulate bounded rationality, PD theory
provides many other advantages to game theory. Its formulation of bounded
rationality explicitly includes a term that, in light of information theory, is nat-
urally interpreted as a cost of computation. PD theory also seamlessly accom-
modates multiple utility functions per player. It also provides many powerful
techniques for finding (bounded rational) equilibria, and helps address the issue
of multiple equilibria. Another advantage is that by changing the coordinates of
the underlying space of joint moves x, the same mathematics describes a type
of bounded rational cooperative game theory, in which the moves of the players
are transformed into contracts they all offer one another.

Perhaps the most succinct and principled way of deriving statistical physics
is as the application of the Maxent principle. In this formulation, the problem
of statistical physics is cast as how best to infer the probability distribution over
a system’s states when one’s prior knowledge consists purely of the expectation
values of certain functions of the system’s state [25, 18]. For example, this pre-
scription says we should infer that the probability distribution p governing the
system is the Boltzmann distribution when our prior knowledge is the system’s
expected energy. This is known as the “canonical ensemble”. Other ensembles
arise when other expectation values are added to one’s prior knowledge. In par-
ticular, if the number of particles in the system is uncertain, but one knows its
expectation value, one arrives at the “grand canonical ensemble”.

One major difficulty with working with these ensembles is that under them
the particles of the system are statistically coupled with one another. For high-
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dimensional systems, this can make statistical physics calculations very difficult.
Accordingly, a large body of work has been produced under the rubric of Mean
Field (MF) theory, in which the ensemble is approximated with a distribution
in which the particles are independent [26]. In an MF approximation, a prod-
uct distribution q governs the joint state of the particles — just as a product
distribution governs the joint strategy of the players in a game.

MF approximations are usually derived in an ad hoc manner. The principled
way to derive a MF approximation (or any other kind) to a particular ensemble is
to specify a distance measure saying how close two probability distributions are,
and then solve for the q that is closest to the distribution being approximated,
p. To do this one needs to specify the distance measure. How best to measure
distances between probability distributions is a topic of ongoing controversy
and research [27]. The most common way to do so is with the infinite limit
log likelihood of data being generated by one distribution but misattributed to
have come from the other. This is known as the Kullback-Leibler (KL) distance
[16, 28, 17]. It is far from being a metric. In particular, it is not symmetric
under interchange of the two distributions being compared.

It turns out that the simplest MF theories minimize the KL distance from q
to p. However it can be argued it is the KL distance from p to q that is the most
appropriate measure, not the KL distance from q to p. Using that distance, the
optimal q is a new kind of approximation not usually considered in statistical
physics.

For the canonical ensemble, the type of KL distance arising in simple MF
theories turns out to be identical to the maxent Lagrangian arising in bounded
rational game theory. This shows how bounded rational (independent) players
are formally identical to the particles in the MF approximation to the canonical
ensemble. Under this identification, the moves of the players play the roles of
the states of the particles, and particle energies are translated into player utili-
ties. The coordinate transformations which in game theory result in cooperative
games are, in statistical physics, techniques for allowing the canonical ensemble
to be more accurately approximated with a product distribution.

This identification raises the potential of transferring some of the power-
ful mathematical techniques that have been developed in the statistical physics
community (e.g., extensions of mean field theory [26] or cavity methods [29])
to noncooperative game theory. In also suggests translating some of the other
ensembles of statistical physics to game theory, in addition to the canonical en-
semble. As an example, in the grand canonical ensemble the number of particles
is variable, which, after a MF approximation, corresponds to having a variable
number of players in game theory. Among other applications, this provides us
with a new framework for analyzing games in evolutionary scenarios, different
from evolutionary game theory. Finally, much work has been done in statistical
physics on approximations that are higher-order than mean-field, introducing
extra random variables that allow for some statistical dependencies coupling the
variables. The associated generalization of PD theory is a full-blown theory of
Probability Lagrangians.

In the next section noncooperative game theory and information theory are
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cursorily reviewed. Then bounded rational game theory is derived, and its
many advantages are discussed. The following section starts with a cursory
review of the information-theoretic derivation of statistical physics. After that
is a discussion of the two kinds of KL distance and the MF theories they induce,
and a discussion of coordinate systems. This section also includes a discussion
on translating a MF version of the grand canonical ensemble into a new kind of
evolutionary game theory.

Miscellaneous proofs can be found in the appendix.
As discussed in the physics section, the maxent Lagrangian and associated

Boltzmann solution at the core of this paper has been investigated for an ex-
tremely long time in the context of many-particle systems. The use of the
Boltzmann distribution over possible moves also has a long history in the Rein-
forcement Learning (RL) literature, i.e., in the design of algorithms for a player
involved in an iterated game with Nature [30, 31]. Related work has consid-
ered multiple players [32, 33]. In particular, some of that work has been done
in the context of “mechanism design” of many players, i.e., in the context of
designing the utility functions of the players to induce them to maximize social
welfare [34, 35, 36, 37]. In all of this RL work the Boltzmann distribution is
usually motivated either as an a priori reasonable way to trade off exploration
and exploitation, as part of Markov Chain Monte Carlo procedure, or by its
asymptotic convergence properties [38].

In addition, independent of the work reported in this paper, the maxent
Lagrangian and/or the Boltzmann distribution has previously been muted as
a way to model human players [39, 40, 10]. Some of that work has explicitly
noted the relation between the Boltzmann distribution and statistical physics
[41]. However the motivation of the maxent Lagrangian and Boltzmann dis-
tribution in that work is ad hoc, based on particular simple models of human
decision-making and/or of player interactions. There is no use of information
theory to derive the maxent Lagrangian from first principles. Due to this, no
connection is made in that previous work between the maxent Lagrangian and
the cost of computation, no extension is made to other kinds of prior knowledge
concerning the game, there is no recognition of how to modify the Lagrangian
for multiple cost functions, there is no extension to the grand canonical ensem-
ble and therefore variable numbers of players, and there is no development of
rationality operators, or the relation between semi-coordinate transformations
and cooperative game theory. Ultimately, this lack of theoretical underpinnings
is also why that previous work did not note the formal identity between the
game theory of actual bounded rational human players and MFT.

Finally, it’s important to note that PD theory also has many applications
in science beyond those considered in this paper. For example, see [21, 22, 42,
43, 44] for work relating the maxent Lagrangian to distributed control and to
distributed optimization. See [43] for algorithms for speeding up convergence to
bounded rational equilibria. Some of those algorithms are related to simulated
and deterministic annealing [28]. In [20] others of those algorithms are related
to Stackelberg games, and more generally to the problem of finding the optimal
control hierarchy for team of players with a common goal, i.e., finding an optimal

4



organization chart. See also [45, 46, 47] for work showing, respectively, how to
use PD theory to improve Metropolis-Hastings sampling, how to relate it to the
mechanism design work in [34, 35, 36, 37], and how to extend it to continuous
move spaces and time-extended strategies.

2 PD theory as Bounded Rational Noncooper-

ative Game Theory

This section motivates PD theory as a way of addressing several of the short-
comings of conventional noncooperative game theory.

2.1 Review of noncooperative game theory

In noncooperative game theory one has a set of N players. Each player i has
its own set of allowed pure strategies. A mixed strategy is a distribution
qi(xi) over player i’s possible pure strategies. Each player i also has a utility
function gi that maps the pure strategies adopted by all N of the players into
the real numbers. So given mixed strategies of all the players, the expected
utility of player i is E(gi) =

∫

dx
∏

j qj(xj)gi(x) 1.
This basic framework can be elaborated to model many interactions be-

tween biological organisms, and in particular between human beings. These
interactions range from simple abstractions like the famous prisoner’s dilemma
to iterated games like chess, to international relations [48, 3, 4].

Much of noncooperative game theory is concerned with equilibrium con-
cepts specifying what joint-strategy one should expect to result from a particu-
lar game. In particular, in a Nash equilibrium every player adopts the mixed
strategy that maximizes its expected utility, given the mixed strategies of the
other players. More formally, ∀i, qi = argmaxq′i

∫

dx q′i
∏

j 6=i qj(xj) gi(x).
Several very rich fields have benefited from a close relationship with nonco-

operative game theory. Particular examples are evolutionary game theory (in
which the set of N players is replaced by an infinite set of reproducing organ-
isms) and cooperative game theory (in which players choose which coalitions
of other players to join) [49, 6]. Game theory as a whole is also closely related
to economics, in particular the field of mechanism design, which is concerned
with how to induce the set of players to adopt a socially desirable joint-strategy
[50, 3, 51, 52].

2.2 Problems with conventional noncooperative game the-

ory

A number of objections to the Nash equilibrium concept have been resolved.
In particular, it was Nash who proved that every game has at least one Nash

1Throughout this paper, the integral symbol will be interpreted in the appropriate measure-
theoretic terms, e.g., as Lebesgue integrals, point-sums, etc.
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equilibrium if one expands the realm of discourse to include mixed strategies.
(The same is not true for pure strategies.) Other objections have been more or
less resolved through numerous refinements of the Nash equilibrium concept.

However there are several major problems with the concept that are still
outstanding. One of them is the possible multiplicity of equilibria; this multi-
plicity means the Nash equilibrium concept cannot be used to specify the joint
strategy that is actually adopted in a real world game. (Some refinements of
the Nash equilibrium concept attempt to address this problem, though none
has succeeded.) Another problem is that while calculating Nash equilibria is
straightforward in many simple games (e.g., 2 players in a zero-sum game), cal-
culating them in the general case can be a very difficult computational multi-
criteria optimization problem. Yet another problem is that there is no general
way to extend the concept to allow each player to have multiple utility functions.

Another set of problems has to do with the connection between the Nash
equilibrium concept and real world games. In the traditional game theory view,
the Nash equilibrium of a game arises all at once, by each player performing
the needed calculations beforehand. This requires in particular that each player
know the other players’ payoff functions. When such an assumption is too
egregious, somewhat contorted alternatives like correlated equilibria or Bayesian
equilibria are invoked 2.

Perhaps the major example of such a problem with the connection between
the Nash equilibrium concept and the real world is its assumption of full ratio-
nality. This is the assumption that every player i can both calculate what the
strategies qj 6=i will be and then calculate its associated optimal distribution. In
other words, it is the assumption that every player will calculate the entire joint
distribution q(x) =

∏

j qj(xj). If for no other reasons than computational limi-
tations of real humans, this assumption is essentially untenable. This problem
is just as severe if one allows statistical coupling among the players [53, 3].

Under the rubric of “behavioral economics” a large body of empirical lore
has been generated characterizing the bounded rationality of humans. Much
(but hardly all) of that lore is encapsulated in formalisms like Prospect theory.
Similarly, much has been learned about the empirical behavior of (bounded
rational) machine learning computer algorithms playing games with one another
[7, 13]. None of this work has resulted in a full mathematical theory of bounded
rationality however.

There have also been numerous theoretical attempts to incorporate bounded
rationality into noncooperative game theory by modifying the Nash equilibrium
concept. Some of them assume essentially that every player’s mixed strategy is
its Nash-optimal strategy with some form of noise superimposed [6]. Others
explicitly model the humans, typically as computationally limited automata,

2The “all at once” view of Nash equilibrium is not adopted in Evolutionary game theory.
There the Nash equilibrium arises through a sequence of multiple games, as the fixed point of
the replicator dynamics. That dynamics is an ad hoc learning rule, i.e., a model for how hu-
mans update their strategies. Interestingly, a bounded rational version of that very dynamics
“falls out” of PD theory, without any need for the fuzzy arguments Evolutionary game theory
uses to justify it as a model for human learning. See [46].
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and assume the automata perform optimally subject to those computational
limitations [10]. Both approaches, while providing insight, are very ad hoc
when viewed as models of games involving real-world organisms or real-world
(i.e., non-trivial) machine learning algorithms.

The rest of this section shows how statistical inference can be used to extend
game theory to avoid many of these shortcomings. In a nutshell, the perspective
adopted here is purely empiricist — you are a scientist, with limited information
about a particular game, and must predict what strategies are being followed
in the game. The prediction you make is the associated equilibrium concept.

This is an exercise in statistical inference, an old and well-understood field.
No modeling of the players and their thought processes need arise in such in-
ference. However if we are provided hard data (!) concerning how the players
behave, those should be taken into account in the inference. In addition, mod-
els concerning the behaviors of players can be used, if desired, for example via
Bayesian inference. Note that any priors arising in that inference are set by us,
the scientists predicting the game, not by the players involved in the game. If
we believe the players to be Bayesians, that simply means that our inference
algorithm must involve probability distributions over the possible priors of the
players.

The particular inference algorithm explored in this paper is the standard
(non-Bayesian) one arising from information theory. (As discussed below, others
are more appropriate in certain circumstances.) The difficulty of calculating
equilibria is addressed in the sections below on solving for the distributions of
PD theory. In adition, the sections after this one present some other extensions
of game theory, in particular to allow for a variable number of players. (Games
with variable number of players arise in many biological scenarios as well as
economic ones.)

2.3 Review of the minimum information principle

Shannon was the first person to realize that based on any of several separate
sets of very simple desiderata, there is a unique real-valued quantification of
the amount of syntactic information in a distribution P (y). He showed that
this amount of information is (the negative of) the Shannon entropy of that

distribution, S(P ) = −
∫

dy P (y)ln[P (y)
µ(y) ] 3.

So for example, the distribution with minimal information is the one that
doesn’t distinguish at all between the various y, i.e., the uniform distribution.
Conversely, the most informative distribution is the one that specifies a sin-
gle possible y. Note that for a product distribution, entropy is additive, i.e.,
S(

∏

i qi(yi)) =
∑

i S(qi).
Say we are given some incomplete prior knowledge about a distribution P (y).

How should one estimate P (y) based on that prior knowledge? Shannon’s result

3µ is an a priori measure over y, often interpreted as a prior probability distribution.
Unless explicitly stated otherwise, in this paper we will always assume it is uniform, and not
write it explicitly. See [25, 18, 16].
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tells us how to do that in the most conservative way: have your estimate of
P (y) contain the minimal amount of extra information beyond that already
contained in the prior knowledge about P (y). Intuitively, this can be viewed as
a version of Occam’s razor. This approach is called the minimum information
(or “maxent”) principle. It has proven extremely useful in domains ranging
from signal processing to image processing to supervised learning [17].

2.4 Maxent Lagrangians

Much of the work on equilibrium concepts in game theory adopts the perspective
of an external observer of a game. We are told something concerning the game,
e.g., the moves sets and utility functions of the separate players, information
sets, etc., and from that wish to predict what joint strategy will be followed by
real-world players of the game. Say that in addition to such information, we are
told the expected utilities of the players. What is our best estimate of the distri-
bution q that generated those expected utility values? By the maxent principle,
it is the distribution with maximal entropy, subject to those expectation values.

To formalize this, for simplicity assume a finite number of players, and a
finite number of possible moves (pure strategies) for each player. To agree with
the convention in other fields, from now on we implicitly flip the sign of each
gi so that the associated player i wants to minimize that function rather than
maximize it. Intuitively, this flipped gi(x) is the “cost” to player i when the
joint-strategy is x, rather than its utility then.

So our prior knowledge is that the players are independent, that their cost
functions are the {gi}, and that their expected utilities are given by the set of
values {εi}. The maxent estimate of the q for that prior knowledge is given by
the minimizer of the Lagrangian

L (q) ,
∑

i

βi[Eq(gi)− εi]− S(q)

=
∑

i

βi[

∫

dx
∏

j

qj(xj)gi(x)− εi]− S(q) (1)

where the subscript on the expectation value indicates that it evaluated un-
der distribution q, and the {βi} are Lagrange parameters implicitly set by the
constraints on the expected utilities 4.

Solving, we find that the mixed strategies minimizing the Lagrangian are
related to each other via

qi(xi) ∝ e
−Eq(i)

(G|xi) (2)

where the overall proportionality constant for each i is set by normalization,
and G ,

∑

i βigi, and the subscript q(i) on the expectation value indicates that

4Throughout this paper the terms in any Lagrangian that restrict distributions to the
unit simplices are implicit. The other constraint needed for a Euclidean vector to be a valid
probability distribution is that none of its components are negative. This will not need to be
explicitly enforced in the Lagrangian here.
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it is evaluated according to the distribution
∏

j 6=i qj . In Eq. 2 the probability
of player i choosing pure strategy xi depends on the effect of that choice on
the utilities of the other players. This reflects the fact that our prior knowledge
concerns all the players equally.

If we wish to focus only on the behavior of player i, it is appropriate to
modify our prior knowledge. To see how to do this, first consider the case of
maximal prior knowledge, in which we know the actual joint-strategy of the
players. For this case, trivially, the maxent principle says we should “estimate”
q as that joint-strategy (it being the q with maximal entropy that is consistent
with our prior knowledge). The same conclusion holds if our prior knowledge
also includes the expected cost of player i.

Now modify this maximal set of prior knowledge by removing from it spec-
ification of player i’s strategy. So our prior knowledge is the mixed strategies
of all players other than i, together with player i’s expected cost. We can in-
corporate the prior knowledge of the other players’ mixed strategies directly
into our Lagrangian, without introducing Lagrange parameters. That maxent
Lagrangian is

Li(qi) , βi[Eq(gi)− εi]− Si(qi)

= βi[

∫

dx
∏

j

qj(xj)gi(x)− εi]− Si(qi).

All of these Lagrangians (one for each i) are jointly solved at a q given by a set
of coupled Boltzmann distributions:

qB
i (xi) ∝ e

−βiEq(i)
(gi|xi) (3)

where the {βi} are Lagrange parameters enforcing our constraints in the usual
way. Following Nash, we can use Brouwer’s fixed point theorem to establish
that for any fixed set of non-negative values {βi}, there must exist at least one
product distribution given by the product of these Boltzmann distributions (one
term in the product for each i).

The first term in Li is minimized by a perfectly rational player. The second
term is minimized by a perfectly irrational player, i.e., by a perfectly uniform
mixed strategy qi. So βi in the maxent Lagrangian explicitly specifies the bal-
ance between the rational and irrational behavior of the player. In particular,
for βi → ∞, by minimizing the Lagrangians we recover the Nash equilibria of
the game. More formally, in that limit the set of q that simultaneously mini-
mize the Lagrangians is the same as the set of delta functions about the Nash
equilibria of the game. The same is true for Eq. 2.

The β < ∞ solutions of Eq. 3 can also be viewed as “equilibra” in the
conventional game theory sense, of being a self-consistent set of mixed strategies
of the players. To see this, posit that for each player there is a rule (implicit
or otherwise) for how it sets its mixed strategy. Say that each player’s rule
for forming its mixed strategy is based on the expected costs of each of that
player’s pure strategies. Have each player’s rule take the form of a Boltzmann
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distribution over those expected costs for each of the player’s possible pure
strategies. (Such a rule may reflect cost of computation (see below), desire by
the player to explore as well as exploit, inherent psychological biases, etc.) Then
the β < ∞ solutions of Eq. 3 constitute a joint mixed strategy where all the
players follow their separate rules in a globally consistent manner.

Eq. 2 is just a special case of Eq. 3, where all player’s share the same cost
function G. (Such games are known as team games.) Due to this, our guar-
antee of the existence of a solution to the set of maxent Lagrangians implies the
existence of a solution of the form Eq. 2.

Typically players aren’t close to perfectly self-defeating. Almost always they
will be closer to minimizing their expected cost than maximizing it. For prior
knowledge consistent with such a case, the βi are all non-negative. Examples of
games and their associated bounded rational equilibria can be found below in
Sec. 2.11, after the discussion of rationality operators.

Finally, our prior knowledge often will not consist of exact specification of
the expected costs of the players, even if that knowledge arises from watching
the players make their moves. Such other kinds of prior knowledge are addressed
in several of the following subsections.

2.5 Alternative interpretations of Lagrangians

There are numerous alternative interpretations of these results. For example,
change our prior knowledge to be the entropy of each player i’s strategy, i.e.,
how unsure it is of what move to make. Now we cannot use information theory
to make our estimate of q. Given that players try to minimize expected cost,
a reasonable alternative is to predict that each player i’s expected cost will be
as small as possible, subject to that provided value of its entropy and the other
players’ strategies. The associated Lagrangians are αi[S(qi)−σi]−E(gi), where
σi is the provided entropy value for player i. This is equivalent to the maxent
Lagrangian, and in particular has the same form of solution, Eq. 3.

Another alternative interpretation involves world cost functions, which are
quantifications of the quality of a joint pure strategy x from the point of view
of an external observer (e.g., a system designer, the government, an auctioneer,
etc.). A particular class of world cost functions are “social welfare functions”,
which can be expressed in terms of the cost functions of the individual players.
Perhaps the simplest example is G(x) =

∑

i βigi(x), where the βi serve to trade
off how much we value one player’s cost vs. anothers. If we know the value of
this social welfare function, but nothing else, then maxent tells us to minimize
the Lagrangian of Eq. 1.

An important aspect of any of these interpretations is that typically one
does not have to explicitly specify the values in one’s “prior knowledge”, e.g.,
εi. This is because typically the associated Lagrange parameters are montonic
functions of those “prior knowledge” values, e.g., βi is monotically increasing
in εi [43]. So it suffices to only specify the values of the Lagrange parameters;
having “prior knowledge” of an expected value is purely notional. For example,
we can take our prior knowledge to be a value of βi (which sets εi) rather than
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a value of εi (which sets the equilibrium value for βi). This is formalized in
the subsection on rationality operators, where the prior knowledge is explicitly
formulated as the values of Lagrange parameters.

2.6 Bounded rational game theory

In many situations we have prior knowledge different from (or in addition to)
expected values of cost functions. This is particularly true when the play-
ers are human beings (so that behavioral economics studies can be brought
to bear) or simple computational algorithms. To apply information theory in
such situations, we simply need to incorporate that prior knowledge into our
Lagrangian(s).

To give a simple example, say that we know that the players all want to
ensure not just a low expected cost, but also that the actual cost doesn’t vary
too much from one sample of q to the next. We can formalize this by saying
that in addition to expected costs, our prior knowledge includes variances in the
costs. Given the expected values of the costs, such variances are specified by the
expected values of the squares of the cost. Accordingly, all our prior knowledge
is in the form of expectation values. Modifying Eq. 3 appropriately, we arrive
at the solution

qi(xi) ∝ e
−Eq(i)

(αi(gi−λi)
2|xi). (4)

where the Lagrange parameters αi and λi are given by the provided expectations
and variances of the costs of the players.

Eq. 4 is our best guess for what the actual mixed strategy of player i is,
in light of our prior knowledge concerning that player. Note that this formula
directly reflects the fact that player i does make her decision based only on min-
imizing cost, i.e., maximizing utility. In this, we are directly incorporating the
possibility that the player violates the axioms of utility theory — something not
allowed in conventional game theory. Other behavioral economics phenomena
like risk aversion can be treated in a similar fashion.

A variant of this scenario would have our prior knowledge only give the
variances of the costs of the players and not their expected costs. In this cost the
Lagrangian must involve a term quadratic in q, in addition to the entropy term
and a term linear in q. (See the subsection on multiple cost functions.) More
generally, our prior knowledge can be any nonlinear function of q. In addition,
even if we stick to prior knowledge that is linear in q, that knowledge can couple
the cost functions of the players. For example, if we know that the expected
difference in cost of players i and j is ε, the associated Lagrange constraint term
is

∫

dxq(x)[gi(x)− gj(x)− ε]. In this situation our prior knowledge couples the
strategies of the players, even though those players are independent. See the
discussions on constrained optimization in [23, 21].
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2.7 Cost of computation

As mentioned above, bounded rationality is an unavoidable consequence of the
cost of computation to player i of finding its optimal strategy. Unfortunately,
one cannot simply incorporate that cost into gi, and then presume that the
player acts perfectly rationally for this new gi. The reason is that this cost
is associated with the entire distribution qi(xi) that player i calculates; it not
associated with some particular joint-strategy formed by sampling such a dis-
tribution.

How might we quantify the cost of calculating qi? The natural approach
is to use information theory. Indeed, that cost arises naturally in the bounded
rationality formulation of game theory presented above. To see how, for each
player i define

fi(x, qi(xi)) , βigi(x) + ln[qi(xi)].

Then we can write the maxent Lagrangian for player i as

Li(q) =

∫

dx q(x)fi(x, qi(xi)). (5)

Now in a bounded rational game every player sets its strategy to minimize its
Lagrangian, given the strategies of the other players. In light of Eq. 5, this
means that we can interpret each player in a bounded rational game as being
perfectly rational for a cost function that incorporates its computational cost.
To do so we simply need to expand the domain of “cost functions” to include
probability values as well as joint moves.

Similar results hold for non-maxent Lagrangians. All that’s needed is that we
can write such a Lagrangian in the form of Eq. 5 for some appropriate function
fi.

2.8 Geometry of the Lagrangian

In this subsection we investigate the surface Li with βi and εi both treated as
fixed parameters. (So in particular, Eq(gi) need not equal εi.) For simplicity,
we consider team games where all gi = G.

In general the geometry of any such surface Li is not trivially related to
that of the underlying G(x), even in the limit where all βi →∞. For example,
in general G(x) can have a local minimum at x = x′ while the associated Li(q)
does not have a local minimum at a q that is a delta function about x′. This
will be the case for example if G(x′′) < G(x′) for an x′′ that does not neighbor
x′; shifting an infinitesimal amount of probability mass from the delta function
centered at x′ to a new one centered at x′′ will reduce E(G) and therefore (given
our choice of the βi) it will reduce Li(q).

To investigate the geometry of this Maxent Lagrangian we must be careful
to distinguish between the various possible parameterizations of distributions.
To begin, let P be the space of distributions (product or otherwise) over our
variables. In addition define Q ⊂ P as the set of product distributions over
X. Also for all i = 1, . . . ..., n, define o(Xi) as the number of possible values xi
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(for simplicity taken to be finite), and write o(X) =
∏

i o(Xi). So the simplex

P ⊂ R
o(X)
+ .

Let t be an arbitrary element of R
o(X)
+ , not necessarily normalized. The en-

tropy with its domain extended to all t, −
∫

dx t(x)lnt(x), is a concave function

over R
o(X)
+ . Therefore it is also concave over any subset of R

o(X)
+ , and in partic-

ular the entropy of normalized vectors p ∈ P with components p(x) is concave.
In addition

∫

dx G(x)t(x) is a convex function of t. So the Maxent Lagrangian
L(p ∈ P) is a convex function. Since P is a convex space, this means the Maxent
Lagrangian has at most one minimum over P.

However we are restricting attention to Q (to reduce the number of param-
eters we’re going to be using, if for no other reason). In general this is not
a convex subspace of P; if p ∈ Q and p′ ∈ Q, then distributions on the line
connecting p and p′ may not be. So even though the Maxent Lagrangian is
convex over Q, we do not have guarantees of a single local minimum. (See the
appendix.)

There are other ways to parameterize product distributions however. In

particular, consider the space R

P

i o(Xi)
+ . The most appropriate way to express

a product distribution q is as a vector in this space, since that way we can assign
each separate distribution qi to a different set of components. For example, we

can parameterize any q ∈ Q in terms of vectors in the space R

P

i o(Xi)
+ via the

Naive Distributed Parameterization (NDP), q(x) =
∏

i qi(xi).
5

Unlike Q itself, its pre-image in R
o(Xi)
+ under the NDP is convex; it is the

set of {qi} such that
∫

dxi qi(xi) = 1 ∀i, i.e., the n-fold Cartesian product
of unit simplices. In addition, say we express the entropy via the NDP as
S({qi}) = −

∫

dx [
∏

i qi(xi)]ln(qi(xi)). If we restrict each qi to be normalized,
then S({qi}) = −

∑

i

∫

dxi qi(xi)ln(qi(xi)), and is concave, as before.

As an aside, note that if we allow {qi} to range over all R

P

i o(Xi)
+ , then the

entropy as just defined is not concave in general:

−

∫

dx [
∏

i

qi(xi)]ln(qi(xi) 6= −
∑

i

∫

dxi qi(xi)ln(qi(xi))

for non-normalized {qi}, the Hessian of S has off-diagonal entries, and its eigen-
values can have mixed signs. To avoid ever confronting this issue, it is expedient
to simply redefine how we extend the domain of the entropy function for the
NDP, as

S({qi}) , −
∑

i

∫

dxi qi(xi)ln(qi(xi)).

Return now to the issue of the convexity of our particular (normalized distri-
butions) optimization problem under the NDP. While with the NDP our feasible

5Note that R

P

i o(Xi)
+ is not resticted to normalized vectors. Accordingly, this parameter-

ization of Q is many-to-one, i.e., many R

P

i o(Xi)
+ vectors with components {qi(xi)} map to

the same q ∈ Q.
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set is convex as desired, and the entropy term of the Maxent Lagrangian is con-
cave as desired, now expected G presents problems:

∫

dx G(x)
∏

i qi(xi) is a
multilinear function of the components of {qi}, and therefore is not convex.

We can fix this while still using the space R

P

i o(Xi)
+ , so long as we change

from the NDP. For example, since geometric means are concave functions,
∫

dx
∏

i[ri(xi)]
1/nG(x) is a convex function of {ri}, so long as G(x) ≤ 0 ∀x.

Unfortunately, in this new parameterization the subtracted entropy term in the
Lagrangian,

∑

i

∫

dxi [ri(xi)]
1/nln([ri(xi)]

1/n), is concave rather than convex.
A more important problem is that the set of r such that

∏

i[ri(xi)]
1/n is nor-

malized is not convex. So for simplicity, from now on we will use the NDP, and
write “q” as shorthand for {qi}.

Consider L as a function of q, with β and γ both treated as fixed parameters.
(So in particular, Eq(g) need not equal γ.) First, say that q(i) is held fixed, with
only qi allowed to vary. This makes E(gi) be linear in qi. In addition, entropy
is a concave function, and the unit simplex is a convex region. Accordingly, the
Lagrangian of Eq. 3 has a unique local minimum over qi. So there is no issue
of choosing among multiple minima when all of q(i) is fixed. Nor is there any
problem of “getting trapped in a local minimum” in a computational search for
that minimum. Indeed, in this situation we can just jump directly to that global
optimum, via Eq. 3. All of this is also true if we are considering the Lagrangian
Lj 6=i rather than Li; the function from i’s strategy to j’s Lagrangian has a
single optimum, interior to i’s simplex.

Now introduce the shorthand

[U ]i,p(xi) ,

∫

dx(i)U(xi, x(i))p(x(i) | xi),

so that [gi]i,q(i)
(xi) is player i’s effective cost function, Eq(i)

(gi | xi). Consider
the value EqB

i
([gi]i,q(i)

). This is the value of E(gi) at i’s bounded rational equi-
librium for the fixed q(i), i.e., it is the value at the minimum over qi of Li. View
that value as a function of βi. One can show that this is a decreasing function.
In fact, its derivative just equals the negative of the variance of [gi]i,q(i)

(xi) eval-

uated under distribution qB
i (xi). Since E(gi) is bounded below (for bounded

gi), this means that that variance must go to zero for large enough βi. So as βi

grows, qB
i (xi) → 0 for all xi that don’t minimize Eq(i)

(gi | xi). In other words,
in that limit, qi becomes Nash-optimal.

One can generalize this result as

∂E(gi)

∂βj
= −Cov([gi]j,qB

(j)
, [gj ]j,qB

(j)
).

In this equation Cov(., .) is just the usual covariance, here evaluated between
the two functions E(gi | xj) and E(gj | xj), taken as functions of the random
variable xj (which is distributed according to qB

j ).
This result has a very intuitive explanation. βj measures how much player

j’s mixed strategy is weighted towards optimizing j’s cost function, i.e., how
rational player j is. (See the subsection on rationality operators below.) So
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the result says that the first-order dependence of i’s cost function on player j’s
rationality is just given by the covariance of the two players’ cost functions. The
more independent those cost functions are (under qB

j ), the less that making j
more rational will affect i’s cost.

Next consider varying over all q ∈ Q, the space of all product distributions
q. Over this space, the E(gi) term in Li is multilinear. So Li is not a simple
convex function of q. This is true even for a team game, with shared βi, for
which case every i has the same Lagrangian. So we do not have the guarantees
of a single local minimum provided by convexity even in this case.

To further analyze the shape of the team game Lagrangian as a function of
q, we start with the following lemma, which extends the technique of Lagrange
parameters to off-equilibrium points:

Lemma 1: Consider the set of all vectors leading from x′ ∈ R
n that are, to first

order, consistent with a set of constraints over R
n. Of those vectors, the one

giving the steepest ascent of a function V (x) is ~u = ∇V +
∑

i λi∇fi, up to an
overall proportionality constant, where the λi enforce the first order consistency
conditions, ~u · ∇fi = 0 ∀i.

Note that the gradient of entropy is infinite at the border of Q, since at least
one ln(qi) term will be negative infinite there. Combined with Lemma 1, this can
be used to establish that at the edge of Q, the steepest descent direction of any
player’s Lagrangian points into the interior of Q (assuming finite β and {gi}).
(This is reflected in the equilibrium solutions Eq. 3.) Accordingly, whereas Nash
equilibria can be on the edge of Q (e.g., for a pure strategy Nash equilibrium),
in bounded rational games any equilibrium must lie in the interior of Q. In
other words, any equilibrium (i.e., any local minimum) of a bounded rational
game has non-zero probability for all joint moves. So just as when only varying
a single qi, we never have to consider extremal mixed strategies in searching for
equilibria over all Q. We can use local descent schemes instead [21, 23, 43].

Lemma 1 can also be used to construct examples of games with more than
one bounded rational equilibrium (just like there are games with more than
Nash equilibrium). One can also show that for every player i and any point
q interior to Q, there are directions in Q along which i’s Lagrangian is locally
convex. Accordingly, no player’s Lagrangian has a local maximum interior to
Q. So if there are multiple local minima of i’s Lagrangian, they are separated
by saddle points across ridges. In addition, the uniform q is a solution to the
set of coupled equations Eq. 3 for a team game, but typically is not a local
minimum, and therefore must be a saddle point.

Say we modify the Lagrangians to be defined for all possible p, not just those
that are product distributions. For example the Lagrangian of Eq. 1 becomes

L (p) ,
∑

i

βi[

∫

dx gi(x)p(x)− εi]− S(p).

The first term in this Lagrangian is linear in p. Since entropy is a concave
function of the Euclidean vector p over the unit simplex, this means that the
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overall Lagrangian is a convex function of p over the space of allowed p. This
means there is a unique minimum of the Lagrangian over the space of all possible
legal p. Furthermore, as mentioned previously, for finite β at least one of the
derivatives of the Lagrangian is negative infinite at the border of the allowed
region of p. This means that the unique minimum of the Lagrangian is interior
to that region, i.e., is a legal probability distribution.

In general this optimal p will not be a product distribution, of course. Rather
the strategy choices of the players are typically statistically coupled, under this
p. Such coupling is very suggestive of various stochastic formulations of non-
cooperative game theory. Coupling also arises in cooperative game theory, in
which binding contracts couple the moves of the players [48, 6].

Similarly, as is proven in the appendix, the Lagrangian L (p) = β
∑

i[Ep(gi)]
2−

S(p) is convex over the manifold of legal p, assuming non-negative β. So the
model of mechanism design introduced below in Sec. 2.9 has a unique equilib-
rium — if we allow the players to be statistically coupled.

2.9 Multiple cost functions per player

Say player i has several different cost functions {gj
i } and wants to choose a

strategy that will do well at all of them. In the case of pure strategies we can
simply “roll up” the cost functions into an aggregate function and employ that
in a conventional, single-cost-function-per-player game theoretic analysis. An

aggregate cost function like
P

j gj
i (x)

P

j 1 would not necessarily work, since it may

be that the pure strategy x minimizing that sum results in a relatively large
value for one of the gj

i (x). However by construction, minimizing a function like

maxjg
j
i (x) will ensure that no particular cost function is favored over the others.

Player i will perform well according to such an aggregate function iff it performs
well according to all of the constituent gj

i .
One might think that for mixed strategies one could similarly roll up the

cost functions and say that player i works to minimize an aggregate cost func-
tion. However especially when player i has many cost functions, it may be that
performance according to one or more of the constituent cost functions is quite
bad even though the performance according to this average function is good. In
particular, it may be that player i has relatively low value of the expectation of
the maximum of its cost functions, even though the maximum of the expected
costs is quite high 6. More generally, we cannot ensure that the expected costs

6This can even occur if all players other than i are playing pure strategies. For example,
say that the number of cost functions is one less than N , the number of potential moves
available to player i’. Say that for the pure strategies of the other players, we can write
gj

i (x) = aδxi,xj + bδxi,N where a > b. Then E(maxjgj
i (x)) is minimized by the mixed

strategy qi(xi) = δxi,N , which results in E(gj
i ) = b for all j. So the worst-case (over cost

functions) expected cost for this mixed strategy is b. On the other hand the uniform strategy

results in E(gj
i ) = (a+b)/N for all j, i.e., for this mixed strategy the worst-case expected cost

is (a+b)/N . That difference in worst-case expected costs may be very large; the qi optimizing

E(maxjgj
i (x)) is very different from the one optimizing maxj [Eq(gj

i )]2, giving a very different

value of maxj [Eq(gj
i )]2.
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of player i, Eq(g
j
i ) =

∫

dx gj
i (x)qi(x)q(i)(x(i)), all have good values by appropri-

ately defining an aggregate gi and requiring only that
∫

dx gi(x)qi(x)q (i)(x(i))
is good. Instead, we must redefine the goal of “minimizing expected costs”.

One way to reformulate our goal proceeds by analogy with the goal typically
ascribed to a player in pure strategy games. This analogy is based on viewing
the cost function for player i as controlled by a fictional player in a meta-game.
The concept of dominant strategies in conventional game theory involves having
player i choose a pure strategy to minimize the worst case (over other players’
moves) cost to i, i.e., to minimize maxx(i)

gi(xi, x(i)). Here the analogy would
be for the player to choose a mixed strategy to minimize the worst case (over
moves by the fictional player) expected cost, i.e., to minimize maxjEq(g

j
i ).

A similar solution, appropriate when all of the cost functions are nowhere-
negative, is for player i to minimize

∑

j [Eq(g
j
i )]

2. Due to the convexity of the
squaring operator such minimization will help ensure that no single expectation
value Eq(g

j
i ) is too high 7. Indeed, consider increasing the power we raise the

costs to, getting the function [
∑

j [Eq(g
j
i )]

n]1/n. Minimizing this for large n will

approximate the lim-sup norm, which would force all gj
i to have the same (as

low as possible) expectation value.
As far as the math is concerned,

∑

j [Eq(g
j
i )]

2 is just a “Lagrangian” of q,
one that is convex like the Lagrangian in Eq. 3. If we wish, we can modify
such a Lagrangian to incorporate bounded rationality, to force the solution to
be interior to Q, getting Lagrangians like

∑

j βj [Eq(g
j
i )]

2 − S(qi), where the
βj determine the relative rationalities of player i according to its various cost
functions.

These kinds of Lagrangians can also model the process of mechanism design,
where there is an external designer who induces the players to adopt a desirable
joint-strategy [3]. As an example, “desirable” sometimes means that no single
player’s expected cost is high. A system that meets this goal fairly well can be
modeled with a Lagrangian involving terms like

∑

i[Eq(gi)]
2.

2.10 Rationality operators

Often our prior knowledge will not concern expected costs. In particular, this is
usually true if our prior knowledge is provided to us before the game is played,
rather than afterward. In such a situation, prior knowledge will more likely con-
cern the “intelligences” of the players, i.e., how close they are to being rational.
In particular, if we want our prior knowledge concerning player i to be relatively
independent of what the other players do, we cannot use i’s expected cost as

7Choosing qi to minimize the expectation value
R

dx q(x)
P

j [g
j
i (x)]2 will do a roughly

similar thing to minimizing
P

j [Eq(gj
i
)]2, in that it will help ensure that qi(xi) is small where

the individual E(gj | xi) are large. However it will also favor having small variances in the

value of the costs, perhaps at the expense of the expected values of the costs: Eq(
P

j [g
j
i
]2) =

P

j([Eq(gj
i
)]2+Varq(gj

i
)). In accord with conventional game theory and the axiomatization of

utility, here we assume players are interested in expected costs (negatie utilities), not variances
in those costs.
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our prior knowledge. Our prior knowledge will often concern how peaked i’s
mixed strategy is about whichever of those of its moves minimizing its cost (or
how peaked we can assume it to be), not the associated minimal cost values.

Formally, the problem faced by player i is how to set its mixed strategy
qi(xi) so as to maximize the expected value of its effective cost function,
E(gi | xi). Generalizing, what we want is a rationality operator R(U, p) that
measures how peaked an arbitrary distribution p(y) is about the minimizers of
an arbitrary cost function U(y), argminyU(y).

The naive choice of such an operator might be the entropy of p. However
this choice would falsely characterize a player i as irrational if its Nash optimal
strategy were not a pure strategy, but rather had extended support across xi.
To correct this problem we could use the entropy of the U -space distribution,
P (u) ,

∫

dxδ(U(x) − u)p(x). However this choice still has problems. In par-
ticular, it doesn’t quantify how peaked P (u) is about low U values, just how
peaked it is in general.

Formally, we make two requirements of R:

1. If p(y) ∝ e−βU(y), for non-negative β, then it is natural to require that
the peakedness of the distribution — its rationality value — is β.

2. We also need to also specify something of R(U, p)’s behavior for non-
Boltzmann p. It will suffice to require that of the p satisfying R(U, p) = β,
the one that has maximal entropy is proportional to e−βU(y). In other
words, we require that the Boltzmann distribution maximizes entropy sub-
ject to a provided value of the rationality operator.

As an illustration, a natural choice for R(U, p) would be the β of the Boltzmann
distribution that “best fits” p. Information theory provides us such a measure
for how well a distribution p1 is fit by a distribution p2. This is the Kullback-
Leibler distance [16, 28]:

KL(p1 || p2) , S(p1 || p2)− S(p1) (6)

where S(p1 || p2) , −
∫

dy p1(y)ln[p2(y)
µ(y) ] is known as the cross entropy from

p1 to p2 (and as usual we implicitly choose uniform µ).
The KL distance is always non-negative, and equals zero iff its two arguments

are identical. In addition, KL(αp1 +(1−α)p2 || p2) is an increasing function of
α ∈ [0.0, 1.0], i.e., as one moves along the line from p1 to p2, the KL distance from
p1 to p2 shrinks.8 The same is true for KL(p2 || αp1 + (1− α)p2). In addition,
those two KL distances are identical to 2nd order about α = 0. However they
differ as one moves away from α = 0 in general; KL distance is not a symmetric
function of its arguments. In addition, it does not obey the triangle inequality,
although it obeys a variant [16]. Despite these shortcomings, it is by far the
most common way to measure the distance between two distributions.

8This follows from the fact that the second derivative with respect to α is non-negative for
all α, combined with the fact that KL distance is never negative and equals 0 when α = 0.
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Define N(U) ,
∫

dy e−U(y), the normalization constant for the distribution
proportional to e−U(y). (This is called the partition function in statistical
physics.) Then using the KL distance, we arrive at the rationality operator

RKL(U, p) , argminβKL(p ||
e−βU

N(βU)
)

= argminβ [β

∫

dy p(y)U(y) + ln(N(βU))].

In the appendix it is proven that RKL respects the two requirements of ratio-
nality operators. Note that the argument of the argmin is globally convex (as
a function of the minimizing variable β). In addition its second derivative is
given by the variance (over y) of the Boltzmann distribution e−βU(y)/N(βU).
This typically makes numerical evaluation of RKL quite fast.

The quantity ln(N(βU)) appearing in the second equation, when scaled by
β−1, is called the free energy. It is easy to verify that it equals the Lagrangian
Ep(U)− S(p)/β if p is given by the Boltzmann distribution p(y) ∝ e−βU(y).

Say our prior knowledge is {ρi}, the rationalities of all the players for their
associated effective cost functions. Then the Lagrangian for our prior knowledge
is

L (q) =
∑

i

λi[R([gi]i,q, qi)− ρi] − S(q). (7)

where the λi are the Lagrange parameters. Just as before, there is an alternative
way to motivate this Lagangian: if our prior knowledge consists of the entropy
of the joint system, and we assume each player will have maximal rationality
subject to that prior knowledge, we are led to the Lagrangian of Eq. 7.

Say q(i) is fixed. Then for the KL rationality operator, the set of all qi with
the same rationality value ρi also share the same value of Eq(gi). Moreover,
that expected value of gi is exactly the one that would arise if qi(xi) were a
Boltzmann distribution over values E(gi | xi) with temperature ρ−1

i .
More formally, it is shown in the appendix that for the Kullback-Leibler

rationality operator, we can replace any constraint of the form R([gi]i,q, qi) = ρi

with Eq(gi) =
∫

dx gi(x) e−ρiE(gi|xi)

N(ρigi)
q(i)(x(i)). For fixed q(i), the set of all qi

obeying the one constraint is identical to the set of all qi obeying the other
one. So knowing that player i has KL rationality ρi is equivalent to knowing
that the actual expected value of gi under qi equals the “ideal expected value”,
in which qi is replaced by the Boltzmann distribution of Eq. 3 with β = ρi.
However since this knowledge does not specify q(i), it does not specify that ideal
expected value of gi. This contrasts with the prior knowledge underlying the
Lagrangian in Eq. 1, in which we know the actual numerical value of Eq(gi).

Now return to the consideration of rationality operators in general, not just
KL rationality operators. Just as before, we can focus on player i by augmenting
our prior knowledge to include the strategies of all the other players. The
associated Lagrangian is

Li(qi) = λi[R([gi]i,q, qi)− ρi] − S(qi). (8)
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(The prior knowledge concerning the strategies of the other players is implicit,
arising in the effective cost function.) It is shown in the appendix that the set of
all the Lagrangians in Eq. 8 (one for each player) are minimized simultaneously
by any distribution qg obeying the equation

qg =
∏

i

e−ρi[gi]i,qg

N(ρi[gi]i,qg )

=

∏

i e−ρi[gi]i,qg

N(
∑

i ρi[gi]i,qg )

where the second equation follows trivially from the first. It is also shown in
the appendix that there is at least one distribution solving this equation and
therefore simultaneously minimizing all the Lagrangians.

Such a qg obeys all the constraints in the Lagrangian in Eq. 7. This means
that there exists a solution to Eq. 7’s associated primal problem, i.e, there is at
least one feasible point of that problem.

Note that the Lagrangian Li of Eq. 8 for player i arises in response to prior
knowledge specific to player i. Changing from one player and its Lagrangian
to another changes the associated prior knowledge. The same is true for the
Lagrangians in Eq. 3.

In contrast, the Lagrangian of Eq. 7 arises for a single centralized body of
prior knowledge, namely the set of all players’ rationalities. For that single body
of knowledge, the equilibrium of the game is the solution to a single-objective
optimization problem. This contrasts with the conventional formulation of full
rationality game theory, where the equilibrium is cast as a solution to a multi-
objective optimization problem (one objective per player). Furthermore, as
usual, for finite β at least one of the derivatives of the Lagrangian of Eq. 7 is
negative infinite at the border of the allowed region of product distributions
(i.e., at the border of the Cartesian product of unit simplices). Accordingly,
all solutions lie in the interior of that region. This can be a big advantage
for finding such solutions numerically, since it allows one to use local descent
algorithms.

2.11 Examples of bounded rational equilibria

It can be difficult to write down a set of cost functions and associated rationali-
ties βi and then solve for the associated bounded rational equilibrium. Starting
with expected costs rather than rationalities (so the βi are not specified up-
front but instead are Lagrange parameters that we must solve for) can be even
more tedious. However there is a simple alternative way to construct examples
of games and their bounded rational equilibria. In this alternative one starts
with a particular mixed strategy q and then solves for a game for which q is a
bounded rational equilibrium, rather than the other way around.

To illustrate this, consider a 2-person noncooperative single-stage game. Let
each player have 3 possible moves. Indicate each players’ three possible moves by
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the numerals 0, 1, and 2. Say the (bounded rational) mixed strategy equilibrium
is

q1(0) = 1/2, q1(1) = 1/4, q1(2) = 1/4;

q2(0) = 2/3, q2(1) = 1/4, q2(2) = 1/12 . (9)

Now we know that at the equilibrium, q1(x1) ∝ e−β1E(g1|x1), where β1 is
player 1’s rationality, and g1 is her cost function (the negative of her utility
function). This means for example that

exp−(β1[E(g1 | x1 = 0)− E(g1 | x1 = 1)]) =
q1(0)

q1(1)
= 2;

β1[E(g1 | x1 = 0)− E(g1 | x1 = 1)] = −ln(2). (10)

We have a similar equation for the remaining independent difference in expec-
tation values for player 1. The analogous pair of equations for player 2 also
hold.

Now define the vectors gi;j(.) , gi(xi = j, .). So for example g1;0 = (g1(x1 =
0, x2 = 0), g1(x1 = 0, x2 = 1), g1(x1 = 0, x2 = 2)). Then we can express our
equations compactly as four dot product equalities:

β1(g1;0 − g1;1) · q2 = −ln(2),

β1(g1;0 − g1;2) · q2 = −ln(2) ;

β2(g2;0 − g2;1) · q1 = −ln(8/3),

β2(g2;0 − g2;2) · q1 = −ln(8) . (11)

Note that we can absorb each βi into its associated gi; all that matters is their
product. We can now plug in for the vectors q1 and q2 from Eq. 9 and simply
write down solutions for the four three-dimensional vectors gi,j . If desired, we
can then evaluate the associated expected values of the cost functions for the
two players.

Note that the variables in the first pair of equalities in Eq. 11 are independent
of those in the second pair. In other words, whereas the Boltzmann equations
giving q for a specified set of gi are a set of coupled equations, the equations
giving the gi for a specified q are not coupled. Note also that our equations for
the gi;j are (extremely) underconstrained. This illustrates how compressive the
mapping from the gi to the associated equilibrium q is. Bear in mind though
that that mapping is also multi-valued in general; in general a single set of cost
functions can have more than one equilibrium, just like it can have more than
one Nash equilibrium.

The generalization of this example to arbitrary numbers of players with ar-
bitrary move spaces is immediate. As before, indicate the moves of every player
by an associated set of integer numerals starting at 0. Let the subscript (i) on
a vector indicate all components but the i’th one. Also absorb the rationalities
βi into the associated gi.

Now specify q and the vectors gi(xi = 0, .) (one vector for each i) to be
anything whatsoever. Then for all players i, the only associated constraint on
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the i’th cost function concerns certain projections of the vectors gi(xi > 0, .)
(one projection for each value xi):

∫

dx′(i)gi(xi, x
′
(i))

∏

j 6=i

qj(x
′
j) = −ln(

qi(0)

qi(xi)
) +

∫

dx′(i)gi(0, x
′
(i))

∏

j 6=i

qj(x
′
j)

∀i, xi

i.e.,

gi(xi, .) · q(i) = −ln(
qi(0)

qi(xi)
) + gi(0, .) · q(i)

∀i, xi. (12)

2.12 Semi-coordinate systems

Consider a multi-stage game like chess, with the stages (i.e., the instants at
which one of the players makes a move) delineated by t. Now strategies are
what are set by the players before play starts. So in such a multi-stage game
the strategy of player i, xi, must be the set of t-indexed maps taking what that
player has observed in the stages t′ < t into its move at stage t. Formally, this
set of maps is called player i’s normal form strategy.

The joint strategy of the two players in chess sets their joint move-sequence,
though in general the reverse need not be true. In addition, one can always
find a joint strategy to result in any particular joint move-sequence. Typically
there is overlap in what the players in chess have observed at stages preceding
the current one. This means that even if the players’ strategies are statistically
independent, their move sequences are statistically coupled. In such a situation,
by parameterizing the space of joint-move-sequences z with joint-strategies x,
we shift our focus from the coupled distribution P (z) to the decoupled product
distribution, q(x). This is the advantage of casting multi-stage games in terms
of normal form strategies.

More generally, any onto mapping ζ : x → z, not necessarily invertible, is
called a semi-coordinate system. The identity mapping z → z is a trivial
example of a semi-coordinate system. Another example is the mapping from
joint-strategies in a multi-stage game to joint move-sequences is an example of a
semi-coordinate system. So changing the representation space of a multi-stage
game from move-sequences z to strategies x is a semi-coordinate transformation
of that game.

We can perform a semi-coordinate transformation even in a single-stage
game. Say we restrict attention to distributions over spaces of possible x that
are product distributions. Then changing ζ(.) from the identity map to some
other function means that the players are no longer independent. After the
transformation their strategy choices — the components of z — are statistically
coupled, even though we are considering a product distribution.
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Formally, this is expressed via the standard rule for transforming probabili-
ties,

Pz(z) , ζ(Px) ,

∫

dxPx(x)δ(z − ζ(x)), (13)

where ζ(.) is the mapping from x to z, and Px and Pz are the distributions across
x-space and z-space, respectively. To see what this rule means geometrically, let
P be the space of all distributions (product or otherwise) over z’s. Recall that
Q is the space of all product distributions over x, and let ζ(Q) be the image of
Q in P. Then by changing ζ(.), we change that image; different choices of ζ(.)
will result in different manifolds ζ(Q).

As an example, say we have two players, with two possible strategies each.
So z consists of the possible joint strategies, labeled (1, 1), (1, 2), (2, 1) and (2, 2).
Have the space of possible x equal the space of possible z, and choose ζ(1, 1) =
(1, 1), ζ(1, 2) = (2, 2), ζ(2, 1) = (2, 1), and ζ(2, 2) = (1, 2). Say that q is given
by q1(x1 = 1) = q2(x2 = 1) = 2/3. Then the distribution over joint-strategies
z is Pz(1, 1) = Px(1, 1) = 4/9, Pz(2, 1) = Pz(2, 2) = 2/9, Pz(1, 2) = 1/9. So
Pz(z) 6= Pz(z1)Pz(z2); the strategies of the players are statistically coupled.

Such coupling of the players’ strategies can be viewed as a manifestation of
sets of potential binding contracts. To illustrate this return to our two player
example. Each possible value of a component xi determines a pair of possible
joint strategies. For example, setting x1 = 1 means the possible joint strategies
are (1, 1) and (2, 2). Accordingly such a value of xi can be viewed as a set of
proffered binding contracts. The value of the other components of x determines
which contract is accepted; it is the intersection of the proffered contracts offered
by all the components of x that determines what single contract is selected.
Continuing with our example, given that x1 = 1, whether the joint-strategy is
(1, 1) or (2, 2) (the two options offered by x1) is determined by the value of x2.

Binding contracts are a central component of cooperative game theory. In
this sense, semi-coordinate transformations can be viewed as a way to convert
noncooperative game theory into a form of cooperative game theory.

While the distribution over x uniquely sets the distribution over z, the re-
verse is not true. However so long as our Lagrangian directly concerns the
distribution over x rather than the distribution over z, by minimizing that La-
grangian we set a distribution over z. In this way we can minimize a Lagrangian
involving product distributions, even though the associated distribution in the
ultimate space of interest is not a product distribution.

The Lagrangian we choose over x should depend on our prior information,
as usual. If we want that Lagrangian to include an expected value over z’s
(e.g., of a cost function), we can directly incorporate that expectation value
into the Lagrangian over x’s, since expected values in x and z are identical:
∫

dzPz(z)A(z) =
∫

dxPx(x)A(ζ(x)) for any function A(z). (Indeed, this is the
standard justification of the rule for transforming probabilities, Eq. 13.)

However other functionals of probability distributions can differ between the
two spaces. This is especially common when ζ(.) is not invertible, so the space
of possible x is larger than the space of possible z. For example, in general the
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entropy of a q ∈ Q will differ from that of its image, ζ(q) ∈ ζ(Q) in such a case.
(The prior probability µ in the definition of entropy only gives us invariance
when the two spaces have the same cardinality.) A correction factor is necessary
to relate the two entropies [46].

In such cases, we have to be careful about which space we use to formulate
our Lagrangian. If we use the transformation ζ(.) as a tool to allow us to analyze
bargaining games with binding contracts, then the direct space of interest is
actually the x’s (that is the place in which the players make their bargaining
moves). In such cases it makes sense to apply all the analysis of the preceding
sections exactly as it is written, concerning Lagrangians and distributions over
x rather than z (so long as we redefine cost functions to implicitly pre-apply
the mapping ζ(.) to their arguments). However if we instead use ζ(.) simply
as a way of establishing statistical dependencies among the strategies of the
players, it may make sense to include the entropy correction factor in our x-
space Lagrangian.

An important special case is where the following three conditions are met:
Each point z is the image under ζ(.) of the same number of points in x-space, n;
µ(x) is uniform (and therefore so is µ(z)); and the Lagrangian in x-space, Lx,
is a sum of expected costs and the entropy. In this situation, consider a z-space
Lagrangian, Lz, whose functional dependence on Pz, the distribution over z’s,
is identical to the dependence of Lx on Px, except that the entropy term is
divided by n 9. Now the minimizer P ∗(x) of Lx is a Boltzmann distribution in
values of the cost function(s). Accordingly, for any z, P ∗(x) is uniform across
all n points x ∈ ζ−1(z) (all such x have the same cost value(s)). This in turn
means that S(ζ(Px)) = nS(Pz) So our two Lagrangians give the same solution,
i.e., the “correction factor” for the entropy term is just multiplication by n.

2.13 Entropic prior game theory

Finally, it is worth noting that in the real world the information we are provided
concerning the system often will not consist of exact values of functionals of q,
be those values expected costs, rationalities, or what have you. Rather that
knowledge will be in the form of data, D, together with an associated likelihood
function over the space of q. For example, that knowledge might consist of a
bias toward particular rationality values, rather than precisely specified values:

P (D | q) ∝ e−α
P

i[RKL([gi]i,q)−ρi]
2

.

where α sets the strength of the bias.
The extension of the minimum information principle to such situations uses

the entropic prior, P (q) ∝ e−γS(q). Bayes’ theorem is then invoked to get the
posterior distribution [18]:

P (q | D) ∝ e−
P

i αi[RKL([gi]i,q)−ρi]
2−γS(q).

9For example, if Lx(Px) = βEPx
(G(ζ(.)))−S(Px), then Lz(Pz) = βEPz

(G(.))−S(Pz)/n,
where Px and Pz are related as in Eq. 13.
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The Bayes optimal estimate for q, under a quadratic penalty term, is then
given by E(q | D). The maxent principle for estimating q is given by this
estimate under the limit of all αi going to infinity. For finite α solving for
E(q | D) can be quite complicated though. For simplicity, such cases are not
considered here.

More generally, it may well be that the entropic prior itself is inappropriate in
a particular situation, and some other prior should be used. This is standard in
Bayesian statistics; how to best infer a distribution q from provided information
(or more generally a posterior distribution over such q) depends on the details
of the full statistical scenario. See for example [54].

3 PD theory and statistical physics

There are many connections between bounded rational game theory — PD
theory — and statistical physics. This should not be too surprising, given
that many of the important concepts in bounded rational game theory, like
the Boltzmann distribution, the partition function, and free energy, were first
explored in statistical physics. This section discusses some of these connections.

3.1 Background on statistical physics

Statistical physics is the physics of systems about which we have incomplete in-
formation. An example is knowing only the expected value of a system’s energy
(i.e., its temperature) rather than the precise value of the energy. The statistical
physics of such systems is known as the canonical ensemble. Another exam-
ple is the grand canonical ensemble (GCE). There the number of particles
of various types in the system is also uncertain. As in the canonical ensemble,
in the GCE what knowledge we do have takes the form of expectation values of
the quantities about which we are uncertain, i.e., the number of particles of the
various types that the system contains, and the energy the system.

Traditionally these kinds of ensembles were analyzed in terms of “baths” of
the uncertain variable that are connected to the system. For example, in the
canonical ensemble the system is connected to a heat bath. In the GCE the
system is also connected to a bath of particles of the various types.

Such analysis showed that for the canonical ensemble the probability of the
system being in the particular state x is given by the Boltzmann distribution
over the associated value of the system’s energy, G(x), with β interpreted as the
(inverse) temperature of the system: p(x) ∝ e−βG(x). This result is independent
of the details characteristics of the physical system; all that is important is the
Hamiltonian G(x), and temperature β.

Note that once one knows p(x) and G(x), one knows the expected energy
of the system. It is G(x) that is a fixed property of the system, whereas β can
vary. Accordingly, specifying β is exactly equivalent to specifying the expected
energy of the system.
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In the case of the GCE, x implicitly specifies the number of particles of the
various types, as well as their precise state. The analysis for that case showed
that p(x) ∝ e−βG(x)−

P

i µini . In this formula β is again the inverse temperature,
ni is the number of particles of type i, and µi > 0 is the chemical potential
of each particle of type i.

Jaynes was the first to show that these results of conventional statistical
physics could be derived without recourse to artificial notions like “baths”, sim-
ply by using the maxent principle. In particular, he used the exact reasoning
in Sec. 2.6 to derive the fact that the canonical ensemble is governed by the
Boltzmann distribution.

3.2 Mean field theory and PD theory

In practice it can be quite difficult to evaluate this Boltzmann distribution, due
to difficulty in evaluating the partition function. For example, in a spin glass, x
is an N -dimensional vector of bits, one per particle, and G(x) =

∑

i,j Hi,jxixj .

So the partition function is given by
∫

dxe−
P

i,j Hi,jxixj , where H is a symmetric
real-valued matrix, and as before we use

∫

to indicate the integral according
to the appropriate measure (here a point-sum measure). In general, evaluating
this sum for large numbers of spins cannot be done in closed form.

Mean Field (MF) theory is a technique for getting around this problem by
approximating the partition function. Intuitively, it works by treating all the
particles as independent. It does this by replacing some of the values of the
state of a particle in the Hamiltonian by its average state. For example, in the
case of the spin glass, one approximates

∑

i,j Hi,j [xi − E(xi)][xj − E(xj)] u 0,
where the expectation values are evaluated according to the associated exact
Boltzmann distribution, i.e., one assumes that fluctuations about the means are
relatively negligible. This then means that

G(x) u

∑

i,j

Hi,j2xiE(xj) −
∑

i,j

Hi,jE(xi)E(xj),

The second sum in this approximation cancels out when we evaluate the asso-
ciated approximate Boltzmann distribution, leaving us with the distribution

pβU (x) u P βU (x) ,
e−β

P

i,j Hi,j2xiE(xj)

∫

dx e−β
P

i,j Hi,j2xiE(xj)

=
∏

i

e−αixi

∫

dxi e−αixi
,

where

αi , 2β
∑

j

Hi,jE(xj).

This approximation P βU (x) is far easier to work with than the exact Boltz-

mann distribution, pβU (x) = e−βG(x)

N(βU) , since each term in the product is for a
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single spin by itself. In particular, if we adopt this approximation we can use
numerical techniques to solve the associated set of simultaneous equations

E(xi) =
∂

∂αi

[

∫

dxi e−αixi ] ∀i

for the E(xi) (so that those E(xi) are no longer exactly equal to the expected
values of the {xi} under the distribution pβU (x)). Given those E(xi) values, we
can then evaluate the associated approximate Boltzmann distribution explicitly.

The mean field approximation to the Boltzmann distribution is a product
distribution, and in fact is identical to the product distribution qg of bounded
rational game theory, for the team game where gi(x) = 2βG(x) ∀i. Accordingly,
the “mean field theory” approximation for an arbitrary Hamiltonian U can be
taken to be the associated team game qg, which is defined for any U .

This bridge between bounded rational game theory and statistical physics
means that many of the powerful tools that have been developed in statistical
physics can be applied to bounded rational game theory. In particular, much
work in statistical physics has been done with approximating distributions that
are higher order than products, allowing for coupling between the variables.
The associated extension of PD theory is a full-blown theory of Probability
Lagrangians.

Finally, this bridge can be used to apply PD theoretic techniques in statistical
physics rather than vice-versa. In particular, it is shown elsewhere [20, 21] that
if one replaces the identical cost function of each player in a team game with
different cost functions, then the bounded rational equilibrium of that game can
be numerically found far more quickly. In the context of statistical physics, this
means that numerically solving for a MF approximation may be expedited by
assigning a different Hamiltonian to each particle.

3.3 Information-theoretic misfit measures

The proper way to approximate a target distribution p with a distribution from
a set C is to first specify a misfit measure saying how well each member of C
approximates p, and then solve for the member with the smallest misfit. This
is just as true when C is the set of all product distributions as when it is any
other set.

How best to measure distances between probability distributions is a topic of
ongoing controversy and research [27]. The most common way to do so is with
the infinite limit log likelihood of data being generated by one distribution but
misattributed to have come from the other. This is known as the Kullback-
Leibler distance [16, 28, 17]:

KL(p1 || p2) , S(p1 || p2)− S(p1) (14)

where S(p1 || p2) , −
∫

dx p1(x)ln[p2(x)
µ(x) ] is known as the cross entropy from p1

to p2 (and as usual we implicitly choose uniform µ). The KL distance is always
non-negative, and equals zero iff its two arguments are identical. However it it is
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far from being a metric. In addition to violating the triangle inequality, it is not
symmetric under interchange of its arguments, and in numerical applications
has a tendency to blow up. (That happens whenever the support of p1 includes
points outside the support of p2.)

Nonetheless, this is by far the most popular measure. It is illuminating to use
it as our misfit measure. As shorthand, define the “pq distance” as KL(p || q),
and the “qp distance” as KL(q || p), where p is our target distribution and q is
a product distribution. Then it is straightforward to show that the qp distance
from q to target distribution pβU is just the maxent Lagrangian, up to irrelevant
overall constants. In other words, the q minimizing the maxent Lagrangian —
the distribution arising in MF theory — is the q with the minimal qp distance
to the associated Boltzmann distribution.10

However the qp distance is the (infinite limit of the negative log of the)
likelihood that distribution p would attribute to data generated by distribution
q. It can be argued that a better measure of how well q approximates p would
be based on the likelihood that q attributes to data generated by p. This is the
pq distance. Up to an overall additive constant (of the canonical distribution’s
entropy), the pq distance is

KL(p || q) = −
∑

i

∫

dx p(x)ln[qi(xi)].

This is equivalent to a team game where each coordinate i has the “Lagrangian”

L∗
i (q) , −

∫

dxi pi(xi)ln[qi(i)],

where pi(xi) is the marginal distribution
∫

dx(i)p(x).
The minimizer of this is just qi = pi ∀i, i.e., each qi is set to the associated

marginal distribution of p. So in particular, when our target distribution is the
canonical ensemble distribution pβU , the optimal q according to pq distance is
the set of marginals of pβU . Note that unlike the solution for qp distance, here
the solution for each qi is independent of the q(i). So we don’t have a game
theory scenario; we do not need to pay attention to the q(i) when estimating
each separate qi. Correspondingly, whereas there are many local minima of the
team game Lagrangian studied above, q ∈ Q → KL(q || pβU ), there is only one,
global minimum of q ∈ Q → KL(pβ || q).

Another difference between the two kinds of KL distance is how the asso-
ciated optimal product distributions are typically calculated numerically. The
product distribution that optimizes the maxent Lagrangian is usually found
via derivative-based traversal of that Lagrangian, or techniques like (mixed)
Brouwer updating[20, 21, 24, 22, 42]. In contrast, the integral giving each
marginal distribution of p is usually found via adaptive importance sampling

10Note that any distribution π(x) can be written as a Boltzmann distribution, simply by
identifying βU(x) = ln(π(x)); the issues involved in approximating the Boltzmann distribution
are generic to the general problem of approximating distributions.
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of the associated integral, with the proposal distribution for the integral to
approximate pi set adaptively, as q(i)[20].

It is possible to motivate yet other choices for the q that best approximates
pβU . To derive one of them, start with Lemma 1, with R

n set to the space of
real-valued functions over the set of x’s (so that n is the number of possible x).
Have a single constraint f that restricts us to P, the unit simplex in R

n, i.e., that
restricts us to the set of functions that (assuming they are nowhere-negative) are
probability distributions. Choose V to be the associated Lagrangian, L (p) =
βEp(G) − S(p), p being a point in our constrained submanifold of R

n. Note
that this p can be any distribution over the x’s, including one that couples the
components {xi}.

Say we are at some current product distribution q. Then we can apply
Lemma 1 with the choices just outlined to tell us what direction to move from q
in P so as to reduce the Lagrangian. In general, taking a step in that direction
will result in a distribution p′ that is not a product distribution. However we
can solve for the product distribution that is closest to that p′, and move to that
product distribution. By iterating this procedure we can define a search over
the submanifold of product distributions. We can then solve for the product
distribution at which this search will terminate.

To do this, of course, we must define what we mean by “closest”. Say that we
choose to measure closeness by pq distance. Then the terminating production
distribution is the one for which the marginals of ∇L + λ∇f all equal 0. For
each i, this means that

∫

dx(i)[βG(x) + ln(p(x)) + 1 + λ] = 0

at the equilibrium product distribution p. Writing out p =
∏

i qi and evaluating
gives

qi(xi) ∝ exp (−β

∫

dx(i)G(x)
∫

dx(i)1
). (15)

This is akin to the qg of a bounded rational game, except that each player/particle
i sets its distribution by evaluating conditional expected U with a uniform dis-
tribution over the x(i), rather than with q(i).

3.4 Semi-coordinate transformations

Let’s say there are numerical difficulties with our finding a q that is local min-
imization of the maxent Lagrangian. That q might still be a poor fit to p(x)
if it is far from the global minimizer of the Lagrangian. Furthermore, even the
global minimizer might be a poor fit, if p(x) simply can’t be well-approximated
by a product distribution.

There are many techniques for improving the fit of a product distribution to
a target distribution in machine learning and statistics [28]. To give a simple
example, say one wishes to approximate the target distribution in R

N with a
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product of Gaussians, one Gaussian for each coordinate. Even if the target
distribution is a Gaussian, if it is askew, then one won’t be able to do a good
job of approximating it with a product of Gaussians. However one can use
Principal Components Analysis (PCA) to find how to rotate one’s coordinates
so that a product of Gaussians fits the target exactly.

Similar techniques can address both the issue of breaking free of local minima
of the Lagrangian, and improving the accuracy of the best product distribution
approximation to p. More precisely, identify x with the variables z discussed in
Sec. 2.12. Then consider changing the map ζ(.) : x → z from the identity map.
This will in general change the mapping from Px to Lz(ζ(Px)). So if Lz is the
Lagrangian we are interested in, the mapping from product distributions over
x can be changed by changing ζ(.), in general.

As an example, consider the case where the space of x’s is identical to the
space of z’s, and consider all possible bijective transformations ζ(.). Entropy
is the same in both spaces for any ζ, i.e., S(Pz) = S(ζ(Px)) = S(Px). So for
fixed Px, the entropy in z-space is independent of ζ(.). However if we fix Px

and change ζ(.) the expected values of utilities will change. So Lz(ζ(Px)) does
depend on ζ(.), as claimed.

This means that by changing ζ(.) while leaving qx unchanged, we will in
general change whether we are at a local minimum of Lz(ζ(qx)). Furthermore,
such a change will change how closely the global minimizer of Lz(ζ(qx)) approxi-
mates any particular target distribution. Indeed, some such transformation will
always transform a team game to have a strictly convex maxent Lagrangian,
with only one (bounded rational) equilibrium, an equilibrium that is in the in-
terior of the region of allowed q and that has the lowest possible value of the
Lagrangian. In the worst case, we can get this behavior by transforming to
the semi-coordinate system in which x is one-dimensional, so that any p(z) —
coupling its variables or not — can be expressed as a q(x) = q1(x1).

Note that unlike with PCA, semi-coordinate transformations can be used
for non-Euclidean semi-coordinates (i.e., when neither x’s nor z’s are Euclidean
vectors). They also can be guided by numerous measures of the goodness of fit
to the target distribution (e.g., KL distance), in contrast to PCA’s restriction
to assuming a Gaussian likelihood.

3.5 Bounded rational game theory for variable number of

players

The bridge between statistical physics and bounded rational game theory have
many uses beyond the practical ones alluded to the previous subsection. In
particular, it suggests extending bounded rational game theory to ensembles
other than the canonical ensemble. As an example, in the GCE the number of
particles of the various allowed types is uncertain and can vary. The bounded
rational game theory version of that ensemble is a game in which the number
of players of various types can vary.

We can illustrate this by extending a simple instance of evolutionary game
theory [6] to incorporate bounded rationality and allow for a finite total number
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of players. Say we have a finite population of players, each of which has one of m′

possible types. (Types are sometimes called feature vectors in the literature.)
Each player i in the population is randomly paired with a different player j, and
they each choose a strategy for a two-person game. The set of strategies each
of those players can choose among is fixed by its respective attribute vector.
The cost player i receives depends on the attribute vectors of itself and of j, in
addition to their joint strategy. Finally, to reflect this dependence, we allow each
player to vary its strategy depending on the attribute vector of its opponent; we
call player i’s meta-strategy the mapping from its opponent’s attribute vector
to i’s strategy 11.

As an example, in biological contexts a player can be a creature, with the
associated type being the creature’s physical attributes. Its strategy would then
be the behavior it exhibits when interacting with another creature. In general,
it might modify that behavior depending on the characteristics of the player it is
interacting with; this is reflected in the player’s meta-strategy. In non-biological
contexts, often one instead interprets the population of (meta)-strategies of all
players sharing the same type as random samples of the mixed strategy a single
higher-level “player”. In this interpretation, in the limit of infinite populations,
the relative frequencies of meta-strategies among all players sharing the type
T are interpreted as the probabilities comprising a mixed strategy of a single
player associated with T .

We encode an instance of this scenario in an x with a countably infinite
number of dimensions. xi,0 , ni(x) specifies the number of players of type i,
with ~n(x) being the vector of the number of players of all types. For 1 < j ≤ xi,0,

xi,j , si,j(x) is the meta-strategy selected by the j’th player of type i. If
its opponent is the j’th player of type T ′, the cost to the i’th player of type
T is gT,i,T ′,j(x) , gT,i,T ′,j(s, s

′, nT , nT ′), where s and s′ are the two players’
respective meta-strategies.12 To enforce consistency between the index numbers
i, j and the associated numbers of players, we set gT,i,T ′,j(s, s

′, ~n) = 0 if either
i > nT or j > nT ′ .

To start, as an example we parallel the GCE, and presume that for each type
we know the expected number of players having that type, and the expected cost
averaged over all players having that type. Also stipulate that the distribution
over x is a product distribution, q. Then our first class of prior information
specifies the values of

∑

k>0 k q
T,0

(k) =
∑

x
T,0

x
T,0

q
T,0

(x
T,0

).

Our second class is of the averaged expected costs of each player engaged in a
game with a randomly chosen opponent (other than itself). They specify the

11Note that it is trivial to replace meta-strategies with strategies throughout the analysis
below: simply restrict attention to meta-strategies that do not vary with the opponent’s
attribute vector.

12Note that this broad notation allows the cost function to vary with the individual players,
in addition to varying with the players’ types and strategies and with the number of players
sharing those types.
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values of

∑

~n:n
T

>0 q(~n)
∑

T ′:n
T ′

>0
[

nT ′−δT,T ′

(
P

T ′′ nT ′′ )−1 ]
∑

j,k

∫

ds
T
ds

T ′

[1− δ
T,T ′

δ
j,k

]
q

T,j
(s

T
)q

T ′,k
(s

T ′
)g

T,j,T ′,k
(s

T
, s

T ′
, ~n)

n
T
(n

T ′
− δT,T ′)

respectively, for all types T . (The sums over j and k all implicitly extend from
1 to ∞, and the delta functions are Kronecker deltas that prevent a player from
playing itself.) Using the consistency character of g’s and dividing, this becomes

∑

x
1,0

. . .
∑

x
m′,0

∑

T ′

∑

j,k

∫

dx
T,j

dx
T ′,k

{[1− δ
T,T ′

δ
j,k

] [

m′
∏

i=1

qi,0(xi,0)] ×

q
T,j

(x
T,j

) q
T ′,k

(x
T ′,k

) g
T,j,T ′,k

(x)

x
T,0

[
∑

T ′′ x
T ′′,0

− 1]
}.

We can write these expressions as expectation values, over x, of 2m′ func-
tions. The first m′ of these functions are the functions nT (x) = xT,0 (one
function for each T ), i.e., the type-counts. Integrating out many components of
q, the second m′ functions are

cT (x) ,

∑

T ′,j,k{[1− δ
T,T ′

δ
j,k

] g
T,j,T ′,k

(x)}

x
T,0

[(
∑

T ′′ x
T ′′,0

)− 1]

(Roughly speaking, cT (x) is the average over all players (T, j) of type T , of the
average over all players other than (T, j), of the cost to (T, j), as delineated in
x.) Accordingly, the maxent principle directs us to minimize the Lagrangian

L (q) = −
∑

T

[µT (E(nT )−NT ) + βT (E(cT )− CT )] − S(q)

where the integers {NT } and real numbers {CT } are our prior information. In
the usual way, the solution for each pair (i ∈ {1, . . . ,m′}, j ≥ 0) is

q
i,j

(x
i,j

) ∝ e−E([
P

T ′ µ
T ′

n
T ′

− β
T ′

c
T ′

] | x
i,j

),

where the values of the Lagrange parameters are all set by our prior information.
This distribution is analogous to the one in the GCE. As usual, one can

consider variants of it by focusing on one variable at a time, having prior knowl-
edge in the form of rationality values, etc. In addition, even if we stay in this
random-2-player games scenario, there is no reason for us to restrict attention
to prior information paralleling that of the GCE. As with bounded rational
game theory with a fixed number of players, our prior information can concern
nonlinear functions of q, couple the cost functions, etc.

32



In particular, in evolutionary game theory we do not know the expected
number of players having each type, nor their average costs. In addition, the
equilibrium concept stipulates that all players will have type T if a particular
condition holds. That condition is that the addition of a player of type other
than T to the population results in an expected cost to that added player that
is greater than the associated expected cost to the players having type T . This
provides a model of the phenotypic interactions underlying natural selection.

We can encapsulate evolutionary game theory in a Lagrangian by appro-
priately replacing each pair of GCE-type constraints (one pair for each type)
with a single constraint. As an example of how to do this, consider the (single)
constraint for type each T that

E(
n

T
∑

T ′
n

T ′

) = E([
max

T ′
c

T ′
− c

T

max
T ′

(c
T ′

)−min
T ′

(c
T ′

)
]
γ

) (16)

for some positive real value γ.
For finite γ, the entropy term in the Lagrangian ensures that no qT,0(xT,0)

equals 0 exactly. So for no T is the expectation value in the lefthand side of this
constraint exactly 0, i.e., all nT will have non-zero expectation. In the limit of
infinite γ, the distribution q minimizing the Lagrangian is non-infinitesimal only
for the evolutionarily stable strategies (ESS’s) of conventional evolutionary
game theory. These are the pairs (type T , associated metastrategy distribution
q

T,j
) that are best performing, in the sense that no other pair has a lower

expected cost function value. Since players of the same type are interchangable,
an equivalent definition of an ESS is as a type T and an associated “rolled up”
probability distribution over meta-strategies sT , given by the values (one for
each sT )

lim

∑

i q
T,i

(x
T,i

)δx
T,i

,s
T

∑

i q
T,i

(x
T,i

)
(17)

Since it has γ → ∞, the ESS gives the condition introduced just above as
underling the equilibrium concept of conventional evolutionary game theory.
In this, the distribution for finite γ can be viewed as a “bounded rational”
extension of conventional evolutionary game theory. In that extension (type,
strategy) pairs are allowed even if they don’t have the lowest possible cost, so
long as their cost is close to the lowest possible. 13 Since ths extension gives
you an entire distribution over the {nT }, it also provides a way to deal with
stocfhastic fluctuations in numbers of (type, meta-strategy) pairs.

There is always a solution to this Lagrangian (unlike the case in conven-
tional full rationality evolutionary game theory). The technique of Lagrange
parameters provides that solution for each pair (i ∈ {1, . . . ,m′}, j ≥ 0) in the
usual way:

q
i,j

(x
i,j

) ∝ e
−E(

P

T ′
α

T ′
f

T ′
(x) | x

i,j
)

13Many other parameterized constraints will result in this kind of relation between the
parameter value and the resultant Lagrangian-minimizing distribution. The one in Eq. 16
was chosen simply for pedagogical clarity.
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where the Lagrange parameters enforce our constraint, and

f
T ′

(x) ,
n

T ′
∑

T ′′
n

T ′′

− [
max

T ′′
c

T ′′
− c

T ′′

max
T ′′

(c
T ′′

)−min
T ′′

(c
T ′′

)
]
γ

.

More general forms of conventional evolutionary game theory allow games
with more than two players, and localization via network structures delineating
how players are likely to be grouped to play a game. Other elaborations have
each player not know the exact attribute vectors of all its opponents, but only
an “information structure” providing some information about those opponents’
attribute vectors. All such extensions can be straightforwardly incorporated
into the current bounded rational analysis. Many other extensions are simple
to make as well. For example, since the cost functions have all components of
~n in their argument lists, they can depend on the total size of the population.
This allows us to model the effect on population size of finite environmental
resources.

It is straightforward to extend all of the foregoing to have games involving
more than two players at once. Note that if we change how we encode the
number of players of the various types and their joint meta-strategy in x, we
change the form of the expectations in Eq. 16. This reflects the fact that by
changing the encoding we change the implication of using a product distribution.
Formally, such a change in the encoding is a change in the semi-coordinate
system. See Sec. 2.12.

4 Appendix

This appendix provides proofs absent from the main text.

4.1 β
∑

i[Ep(gi)]
2 − S(p) is convex over the unit simplex

Proof: Since S(p) is concave over the unit simplex, and the unit simplex is a
hyperplane, it suffices to prove that

∑

i[Ep(gi)]
2 is convex over all of Euclidean

space. Since a weighted average of convex functions is convex, we only need
to prove that any single function of the form [

∫

dx p(x)f(x)]2 is convex. The
Hessian of this function is 2f(x)f(x′). Rotate coordinates so that f is a basis
vector, i.e., so that f is proportional to a delta function. This doesn’t change
the eigenvalues of the Hessian. After this change though, the Hessian is diag-
onal, with one non-zero entry on the diagonal, which is non-negative. So its
eigenvalues are zero and a non-negative number. QED.

4.2 RKL is a rationality operator

Proof: Since KL distance only equals 0 when its arguments match and is
never negative, requirement (1) of rationality operators holds for RKL. Next,
since RKL = argminβ [β

∫

dy p(y)U(y) + ln(N(βU))], we know that Ep(U) =

− 1
N(βU)

∂N(βU)
∂β |β=RKL(U,p). Accordingly, all p with the same rationality have
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the same expected value Ep(U). Using the technique of Lagrange parameters
then readily establishes that of those distributions having the same expected
U , the one with maximal entropy is a Boltzmann distribution. Furthermore,
by requirement (1), we know that for a Boltzmann distribution the exponent β
must equal the rationality of that distribution. QED.

4.3 Alternative form of a constraint on RKL

Proof: Let f{α, v} be any function that is monotonically decreasing in its (real-
valued) first argument. Then any constraint R([gi]i,q, qi)− ρi = 0 is satisfied iff
the constraint f{R([gi]i,q, qi), q(i)} − f{ρi, q(i)} = 0 is satisfied. Choose

f{α, q(i)} = −
∂ln(N(β[gi]i,q))

∂β
|β=α

=

∫

dxi[gi]i,qe
−α[gi]i,q(xi)

N(α[gi]i,q)
.

Differentiating this quantity with respect to α gives the negative of the vari-

ance of [gi]i,q under the Boltzmann distribution e−α[gi]i,q

N(α[gi]i,q) . Since variances are

non-negative, this derivative is non-positive, which establishes that f is mono-
tonically decreasing in its first argument.

Evaluating,

f{ρi, q(i)} =

∫

dx gi(x)
e−ρiE(gi|xi)

N(ρigi)
q(i)(x(i)).

In addition, from the equation defining RKL, we know that

−
ln(N(βU(xi)))

∂β
|β=RKL(U,qi) =

∫

dxiqi(xi)U(xi)

for any function U . Plugging in U = [gi]i,q, we see that

f{R([gi]i,q, qi), q(i)) =

∫

dxiqi(xi)[gi]i,q(xi)

= Eq(gi).QED.

4.4 qg minimizes the Lagrangians of Eq. 8

Proof: Following Nash, we can use Brouwer’s fixed point theorem to establish
that for any non-negative {ρi}, there must exist at least one product distribution
solving the equation for qg. The constraint terms in all the Li of Eq. 8 are zero
for this distribution. By requirement (2), we also know that given qg

(i) (and

therefore [gi]i,qg ), there is no qi with rationality ρi that has lower entropy than
qg
i . Accordingly, no qi will have a lower value of Li than q(i). Since this holds

for all i, qg minimizes all the Lagrangians in Eq. 8 simultaneously. QED.
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4.5 Derivation of Lemma 1

Proof: Consider the set of ~u such that the directional derivatives D~ufi evaluated
at x′ all equal 0. These are the directions consistent with our constraints to
first order. We need to find the one of those ~u such that D~ug evaluated at x′ is
maximal.

To simplify the analysis we introduce the constraint that |~u| = 1. This
means that the directional derivative D~uV for any function V is just ~u · ∇V .
We then use Lagrange parameters to solve our problem. Our constraints on ~u
are

∑

j u2
j = 1 and D~ufi(x

′) = ~u · ∇fi(x
′) = 0 ∀i. Our objective function is

D~uV (x′) = ~u · ∇V (x′).
Differentiating the Lagrangian gives

2λ0ui +
∑

i

λi∇f = ∇V ∀i.

with solution

ui =
∇V −

∑

i λi∇f

2λ0
.

λ0 enforces our constraint on |~u|. Since we are only interested in specifying ~u
up to a proportionality constant, we can set 2λ0 = 1. Redefining the Lagrange
parameters by multiplying them by −1 then gives the result claimed. QED.

4.6 Proof of claims following Lemma 1

i) Define fi(q) ,
∫

dxiqi(xi), i.e., fi is the constraint forcing qi to be normalized.
Now for any q that equals zero for some joint move there must be an i and an x′i
such that qi(x

′
i) = 0. Plugging into Lemma 1, we can evaluate the component

of the direction of steepest descent along the direction of player i’s probability
of making move x′i:

∂Li

∂qi(xi)
+ λ

∂fi

∂qi(xi)
=

βE(gi | xi) + ln(qi(xi))−

∫

dx′′i [βE(gi | x
′′
i ) + ln(qi(x

′′
i ))]

∫

dx′′i 1

Since there must some x′′i such tha qi(x
′′
i ) 6= 0, ∃xi such that βE(gi | x′′i ) +

ln(qi(x
′′
i )) is finite. Therefore our component is negative infinite. So Li can be

reduced by increasing qi(x
′
i). Accordingly, no q having zero probability for some

joint move x can be a minimum of i’s Lagrangian.

ii) As a simple example of multiple minima for the team game, consider a prob-
lem where all Xi = B. Say that G(x) has identically-valued local minimum
at x = (1, 1, . . .) and x = (2, 2, . . .), and that G(x) for all other x is the same
(large) value. Consider the limit where all βi →∞. Then one q that minimizes
L has all qi being delta functions about x = 1, and another local minimum has

36



them all being a delta function about x = 2. Consider changing all qi infinitesi-
mally away from the delta function giving the first of these local minima. Doing
this will introduce extra probability at all vertices of the hypercube, not just
at x = (2, 2, . . .). Accordingly, such an infinitesimal change to q raises E(G)
rather than lowers it; one cannot make an infinitesimal change to this q that
will lower the Lagrangian. The same is true for the other local minimum of the
Lagrangian.

To construct a bounded rational game with multiple equilibria, note that at
any (necessarily interior) local minimum q, for each i,

βE(gi | xi) + ln(qi(xi)) =

β

∫

dx(i)gi(xi, x(i))
∏

j 6=i

qj(xj) + ln(qi(xi))

must be independent of xi, by Lemma 1. So say there is a component-by-
component bijection T (x) , (T1(x1), T2(x2), . . .) that leaves all the {gj} un-
changed, i.e., such that gj(x) = gj(T (x)) ∀x, j 14.

Define q′ by q′(x) = q(T (x)) ∀x. Then for any two values x1
i and x2

i ,

βEq′(gi | x
1
i ) + ln(q′i(x

1
i ))

− βEq′(gi | x
2
i ) + ln(q′i(x

2
i ))

=

β

∫

dx(i)gi(x
1
i , x(i))

∏

j 6=i

qj(T (xj)) + ln(qi(T (x1
i )))

− β

∫

dx(i)gi(x
2
i , x(i))

∏

j 6=i

qj(T (xj))) + ln(qi(T (x2
i )))

=

β

∫

dx(i)gi(x
1
i , T

−1(x(i)))
∏

j 6=i

qj(xj) + ln(qi(T (x1
i )))

− β

∫

dx(i)gi(x
2
i , T

−1(x(i)))
∏

j 6=i

qj(xj)) + ln(qi(T (x2
i )))

=

β

∫

dx(i)gi(T (x1
i ), x(i)))

∏

j 6=i

qj(xj) + ln(qi(T (x1
i )))

− β

∫

dx(i)gi(T (x2
i ), x(i)))

∏

j 6=i

qj(xj)) + ln(qi(T (x2
i )))

=

βEq(gi | T (x1
i )) + ln(qi(T (x1

i )))

− βEq(gi | T (x2
i )) + ln(qi(T (x2

i )))

14As an example, consider a congestion team game in which all players have the same set of
possible moves, G being a function only of the bit string indexed by k ∈ N, {N(x, k)}, where
N(x, k) = 1 iff there is a move that is shared by exactly k of the players when the joint move
is x. In this case T just permutes the set of possible moves in the same way for all players.
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where the invariance of gi was used in the penultimate step. Since q is a local
minimum though, this last difference must equal 0. Therefore q′ is also a local
minimum.

Now choose the game so that ∀i, xi, T (xi) 6= xi. (Our congestion game
example has this property.) Then the only way the transformation q → q(T )
can avoiding producing a new product distribution is if qi(xi) = qi(x

′
i) ∀i, xi, x

′
i,

i.e., q is uniform. Say the Hessians of the players’ Lagrangians are not all
positive definite at the uniform q. (For example have our congestion game be
biased away from uniform multiplicities.) Then that q is not a local minimum
of the Lagrangians. Therefore at a local minimum, q 6= q(T ). Accordingly, q
and q(T ) are two distinct equilibria.

iii) To establish that at any q there is always a direction along which any player’s
Lagrangian is locally convex, fix all but two of the {qi}, q0 and q1, and fix both
q0 and q1 for all but two of their respective possible values, which we can write
as q0(0), q0(1), q1(0), and q1(1), respectively. So we can parameterize the set of
q we’re considering by two real numbers, x , q0(0) and y , q1(0). The 2 × 2
Hessian of Li as a function of x and y has the entries

1

x
+

1

a− x
α

α
1

y
+

1

b− y

where a , 1− q0(0)− q0(1) and b , 1− q1(0)− q1(1), and α is a function of gi

and
∏

j 6=0,1 qj . Defining s , 1
x + 1

a−x and t , 1
y + 1

b−y , the eigenvalues of that
Hessian are

s + t±
√

4α2 + (s− t)2

2
.

The eigenvalue for the positive root is necessarily positive. Therefore along the
corresponding eigenvector, Li is convex at q. QED.

iv) There are several ways to show that the value of EqB
i

([gi]i,q(i)
) must shrink

as βi grows. Here we do so by evaluating the associated derivative with respect
to βi.

Define N(U) ,
∫

dy e−U(y), the normalization constant for the distribution
proportional to e−U(y). View the xi-indexed vector qB

i as a function of βi, gi

and q(i). So we can somewhat inelegantly write E(gi) = EqB
i (βi,gi,q(i)),q(i)

(gi).
Then one can expand

∂E(gi)

∂βi
= −

∂2ln(N(βi[gi]i,qB
(i)

))

∂β2
i

= −Var([gi]i,qB
(i)

)

where the variance is over possible xi, sampled according to qB
i (xi). QED.
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